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ABSTRACT )
This paper is to appear in the conference volume on "Accelerated Life b
Testing and Experts® Opinions in Reliability,” C. Clarotti and D. V. ;
Lindley, editors% The conference took place in Lerici, Italy, July 28 to 4

August 1, 1986. ‘This paper is~an\?xposition of the ideas of R. A. Howard,

- T w_ e

J. E. Matheson, and R. D. Shachter:\Ehdvis intended primarily for a

statistical audience. The influence diagram can be used to model almost any

statistical problem of interest. In most cases, it graphically highlights

conditional independence relationships implied by the model. Using decision <
nodes, the influence diagram provides an alternative to the decision tree :f
for Bayesian decis:on analysis. Kﬁ- v{.1 . )).{é,"; / i, 8 . r7 |
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1. INTRODUCTION

Too often in contemplating a statistical analysis, the statistician
becomes absorbed with the mathematical details such as particular
probability densities, sufficient statistics, and computational methods,
without fully understanding the problem at hand. Influence diagrams provide
a valuable aid for modeling the logical and statistical dependencies betwecc:.
random quantities and also between these quantities and decision
alternatives. This can be done, initially, without specifying particular
probability functions.

The influence diagram is a graphical representation of the
relationships between random quantities which are judged relevant to a real
problem. In this respect it is a modeling tool. The probability weights or
the graph nodes are also based on judgements relevant to a real problem.
Although the influence diagram is an abstract mathematical model, its
validity is based on some real problem of interest.

Influence diagrams were developed as a Bayesian computer aided modelirn.
tool by Howard and Matheson [1984]. Influence diagrams also provide a
graphical representation of conditional independence for random quantities.
An algorithm for solving Bayesian decision analysis problems through
influence diagram manipulations was constructed by R. Shachter [1986]. This
algorithm is useful in statistical applications, especially in experimental
design [e.g. Barlow and Zhang (1986)]. The influence diagram is also a
generalization of the fault tree representation used in engineering risk

analysis.
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The influence diagram is a modeling alternative to the decision tree.
Since the order of event expansion required by the decision tree is rarely
the natural order in which to assess the decision maker's information, the
influence diagram may be more useful. For an excellent introduction to
decision analysis and decision trees see Lindley [1985].

This paper is largely tutorial since the basic ideas were developed
elsewhere. However some of the proofs are original. We begin the
discussion with influence diagrams having only probabilistic nodes.

Deterministic and decision nodes are treated in later sections.

2. PROBABILISTIC INFLUENCE DIAGRAMS

A probabilistic influence diagram is first of all a directed acyclic
graph. Circle nodes in the graph denote random quantities. Arcs joining
circle nodes denote possible statistical dependence. Associated with each
circle node is a conditional probability function. Conditioning is only
with respect to immediate predecessor nodes and is indicated by the
direction of the arrows. In Figure 2.1, z is an immediate predecessor of
both x and y. From the graph in Figure 2.1, the joint probability functio:,
p(x.y.z). is p(z)p(x|z)p(yl: Hence from the graph, the random quantity x
is conditionally independent of y given z. Note that there is no arc
joining nodes x and y. Absence of an arc between two nodes indicates tha:

the node random quantities are conditionally independent given the state of

immediate predecessor nodes. This will be proved later.

The influence diagrams in Figures 2.1 and 2.2 are fundamentally

different. From the graph in Figure 2.2 the joint probability function




p(x|z)
p(z)
p(ylz)
Figure 2.1
x and y Conditionally Independent
Given z
p(x)
p(zix.y)
p(y)
Figure 2.2

x and y Independent
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p(x.y.z) is p(x)p(y)p(zl|x.y). Hence., in this case, random quantities » and
y are unconditionally independent. As we show later, nodes without input .

arcs are always unconditionally independent. .

Given a directed acyclic graph together with node conditional

probabilities, there exists a unique joint probability function
corresponding to the random quantities represented by the nodes of the N
graph. This is because a directed graph is acyclic if and only if there 5
exists a list of the nodes such that any successor of a node i in the grap!.
follows node i in the list as well.
Relative to the acyclic graph in Figure 2.3, we can find a list

ordering which agrees with the graph ordering. Since the graph is acyclic, B
at least one node must be a root node (i.e., have no inward pointing arcs).

Since x4 is such a node, let X be the first node in the list ordering. Now

W A LA I

delete node Xy and all arcs incident to X from the graph. Again, the

remaining graph must be acyvclic and have at least one root node. Clearly x*

£ L7/

is such a node. Proceeding in this way we obtain the list ordering
X, < X4 < X < X4

which agrees with the graph ordering. (The list ordering. however, is not

in general unique). It follows that the joint probability function for X .

x2, X, x4 can be calculated as A

]

Ry
p(xl.x2.x3.x4) p(xl)p(x3|x1)p(x2|xl.x3)p(x4|xl.x2.x3) :F

p(xl)p(xalxl)p(xz'xl-x3)p(x4|x2'x3) by
since. from the graph, X4 depends only on Xy and Ny If the graph were not
acyclic, the conditional probability wecights on the graph nodes would 1ot

determine the joint probabililty function of the node random quantitics.

e 2N

R R T S
SRR - R



Figure 2.3
A Bridge Type Influence Diagram
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3. CONDITIONAL INDEPENDENCE

We will need the concept of a directed path. By a directed path fron

node x; to node xj we mean a chain of ordered pairs (xi.xkl). (xkl.xk )
(xk .xj) corresponding to directed arcs which lead from X, to xj. If therc
t

is no path (directed or undirected) in an influence diagram from one node tu

another, then the corresponding random quantities are unconditionally

independent. In graph theory terminology, the graph is disconnected and tl.:
nodes are in separate components.

In Figure 3.1, ovals are used to denote disjoint sets of immediate
graph predecessor nodes. Thus v, denotes a set of immediate predecessor

nodes to X4 which are not also immediate predecessors of xj. while wij

denotes a set of nodes which are immediate predecessors of both X, and xj.
Theorem 3.1. In an influence diagram. if there is no arc from X, to xj nor

is there an arc from x, to x,, then X4 and xj are conditionally independern:

j i

given immediate predecessor nodes; i.e.,

p(xi.lewi.wj.wij)
= p(xilwi.wij) p(lewj,wij).

Proof. Since an influence diagram is acyclic, there exists a list orderin.
which can be used to calculate the joint distribution of node random

quantities; i.e.,

p(xl.x2.....x ) = ...p(xilwi.w..)...p(lewj.w. )

1j ij
. - . i
Fix X xj. Wi W wij' divide by p(wi.wj.wij) > 0 and integrate with

J

respect to all other random quantities. Since X, and xj do not belong to

n

(wi'wj'wij) we have
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Conditional Independence
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p(xi'xj Iwi'wj'wij) = p(xl |wi'wij) p(lewJ'wlj) '.

QED ~
=

In Figure 2.3, Xy and x, are conditionally independent given Xq and x, X

A

since X4 has no predecessors and Xy and X, are immediate predecessors of X4 Py

Corollary 3.2. In an influence diagram, if nodes Xy and xj have no incori:.

arcs, i.e., (wi'wij'wj) is empty, then X4 and xj are unconditionally 3
Y

independent. A
Proof. Since X, and x‘j have no incoming arcs, they have no connecting arc G
and Theorem 3.1 applies. Since (wi.wij.wj) is empty, X, and xj are f
-~

unconditionally independent. <
3

QED H
o

Although the probabilistic influence diagram is a useful device for :}
illustrating independence., it may not graphically display all the 3:
»

independence relationships implied by the joint probability function. Wc¢ =
1

can use Figure 2.2 again to illustrate these ideas. Suppose a crime has &
been committed and z denotes the blood type of a blood stain found at the K
scene of the crime. A suspect is in hand. Let y be the suspect's blood .
type. For convenience we consider only two blood types, say type 1 and tvpe .
2. Let p(y=1) = 6 where 0 is the frequency of blood type 1 in the general E
population. %
Let T

"

1 if the suspect is guilty A

X = o,

0 otherwise.

N

-~

Let p(z=1] y=1. x=1) = 1 N
and p(z=1] y. x=0) = 8. a
Let p(x=1) be our prior probability that the suspect is guilty. S
-

¥

>

|\
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As Figure 2.2 shows, we have judged x and y independent, a priori. tha:
is. the guilt or innocence of the suspect is independent of his/her blood
type. However, if the suspect is guilty and his/her blood type is 1, then
we have judged that the blood stain found at the scenc of the crime must
also be type 1 so that x, y and z are not independent. But we have also
judged x and z independent and this is not obvious from the graph. It is
only clear after we do the probability calculations. (However, it can be

shown that y and z are dependent in this case.)

4. BAYES' THEOREM

Two probabilistic influence diagrams with the same nodes and the same
joint probability function for random quantities will be said to be
equi _alent. Under certain conditions we can reverse the arc between two
nodes, add arcs and, after replacing the node conditional probability
weights by appropriate new conditional probabilities, the two probabilistic
influence diagrams will be equivalent.
Theorem 4.1. In an influence diagram [cf. Figure 4.1] suppose there is an
arc from node x, to xj but no other directed path from node X, to node xj.
If

1. arcs from W, to xJ and from wj to x, are added:

2. the arc from X, to xj is reversed;

3. p(xj|xi,wj,wij) is replaced by

p(lewi.wj.wij

and 4. p(xilwi,wij) is replaced by

) = ]p(lexi'wj'wij) p(xilwi.wij) dxi > 0,

= px_ Ix, . w_.w, X W, W, )/ W LW W
p(xl lxj.wi.wj’wij) p(\‘]|\l wJ “IJ) p(\ll“l “1‘)) p()\‘]’“l “.J “IJ)
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(i.e.. Bayes' theorem) then the probabilistic influence diagrams are
equivalent; i.e., the influence diagrams in Figures 4.1 and 4.3 are
equivalent.

Proof. Since there is only one directed path from Xy to x.. namely the arc

J

from x4 to xj. we can add arcs from Wy to xj and from wJ to X4 without
creating any cycles. This will only create pseudo dependencies. Clearly
the influence diagram corresponding to the augmented graph, Figure 4.2, is

equivalent to the original influence diagram.

Consider a list ordering for the augmented graph. Clearly X, must

precede x_. in this list ordering, and in fact

J

.. < (wi,wj.wij) < X, ¢ X <.
since there is no other directed path from Xy to xj: i.e., there can be no
other nodes between x, and x, in the list ordering.

i J
We need only show that the joint probability function for the

transformed influence diagram in Figure 4.3 is the same as that for the
original influence diagram. The joint probability function for the original
influence diagram based on the list ordering for the augmented influence
diagram will contain the two terms

Plxg Iwyowy ) PlxgIxgowgowy ). (4.1)
If we both multiply and divide (4.1) by

p(lewi.wj.wij) = f p(lexi.wj.wij) p(xi,wi.wij) dxi >0
then (4.1) becomes
p(xilxj.wi.wj.wij) p(lewi.wj.wij)

by Bayes' theorem. The joint probability functions are equal since all the
other terms in the two joint probability functions are the same.

QED

. P IS -’\

D5 RSN QAR Y




:p(lexi,wj,w”)

Figure 4.1

p(xilwi'wj’wij) E : p(lexi'wi'wj'wq)

Figure 4.2

p(XiIXI-,Wi.W].,Wij)E E p(x,[w,.w,.w,)

Figure 4.3
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Arc reversal corresponds to applying Bayes' theorem. However it also
involves the addition of arcs. These arcs may. in some cases. involve only
pseudo dependencies. In this sense information may have been lost as a
result of arc reversal. For these reasons, we want to avoid arc revers:l

whenever possible.

5. BARREN NODES

Consider Figure 5.1 and the problem of calculating p(x1|x5).
Distinguish nodes Xy and Xg by shading them as in Figure 5.1. Relative to
our problem, we claim that node Xy is irrelevant. That is, relative to our
problem, we can delete node Xy and all arcs incident to node Xy The rezsor
we may do this is that in any list ordering for the inf luence diagram, nodc

x, may always be listed last; i.e.,

4
F xl < x3 < x2 < XS < x_1

and we can calculate the joint probability function

p(x,.x.)

without reference to node X4 Hence, x4 is noninformative relative our

problem.

RS T I

In general let X [xK] denote a vector of nodes
o lied) Tixgl e K))
where J N K = . If we are interested in calculating p(lexK) or p(xK]xj)
we first distinguish nodes X, where i ¢ J U K.

Definition. (Barren Node). In an influence diagram with nodes (xi} ie o

K} distinguished and J N K = ®. we say that node Xy is barren with respoct

to the distinguished nodes if

<. -~“". '.'."- - B L
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Figure 5.1
Figure 5.2
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1. b€ JUK ;

and 2. all arcs incident to X point toward Xy -
Theorem 5.1. Given a probabilistic influence diagram with distinguished
nodes (xil i € JUK} and any node x,. b € J UK, we can always find an

equivalent influence diagram in which node x, is barren with respect to

b
J UK.

Proof. Figure 5.2 represents node X in the influence diagram where

{ x C ... <x,
i

are the immediate predecessor nodes of Xy and

X < x Lo Ox

s

are the immediate successor nodes of X - Node X will become barren if we
can reverse all the arcs from X to successor nodes without changing the
Joint probability function p(xil i € JUK).

Ey Theorem 4.1 we can first reverse the arc from Xy to x,. since this
1

cannot introduce a cycle. (Note that were we to reverse the arc from Xy to

x.j first we could possibly introduce a cycle.) Proceeding in this way we
2

will, by Theorem 4.1, eventually have an equivalent influence diagram in

which X is barren with respect to J U K.
QED

6. AN ALGORITHM FOR CALCULATING DLKKlEJl
To calculate p(xK| xJ) we first distinguish nodes (xi | i € JUK ).

Let Xg be the vector of nodes which are neither predecessors nor successors

of (xJ. xK). (A node, x,. i1s a predecessor (successor) of another node. X5

i

» o A T T AT T T e N R e N N e e e pe AR
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if there is a directed path from Xy (x ) to x (xi). Let Xpred denote the

vector of predecessor nodes to (x xK) and Xg the vector of successor nodc:
to (xJ. xK). Then there exists a list ordering for the influence diagram
such that

XPred < (XJ' 3 xK) < Xs:
Clearly xg are barren relative to our problem and may be deleted. Hence wc

and the arcs incident to x

need only consider the remaining graph with Xg S

deleted.

By Theorem 5.1 we can convert all nodes in Xp to barren nodes in such a
way that the resulting influence diagram will have the same joint
probability function with respect to (xPred' xJ. xK) as did the original
influence diagram.

To calculate p(xKI xJ) we need only integrate the joint probability
function for (xPred' XJ xK). namely

P(Xprea) PIXyXyXp eq)

with respect to Xpred to obtain p(xJ.xK) from which we can calculate
POy Ix5)

The suggested algorithm is in the nature of an existence theorem in the
sense that p(xleJ) can be found by graphical and probabilistic
manipulations using the concept of arc reversal. However an efficient

algorithm for doing this is the subject of current research efforts.

7. DECISION NODES ANL VALUE NODES
Decision nodes and value nodes are special. A decision node.

represented by a rectangle, denotes a decision function, di' mapping the

YR I ‘ RS A Y DL NI N AN C N - - .
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states of imuediate input nodes into a set of decision alternatives
(dil' di2""‘dim}' (We will often use di to represent the decision
function as well as the decision taken.) The states of immediate input
nodes to a decision node constitute the information available at the time o
decision. The decision taken depends on the states of immediate predecesso:
nodes. Decision nodes introduce a time ordering into the influence diagranr
which was not present in the probabilistic influence diagram. If decision
node di precedes decision node dj in the graph, then decision di must be
taken before decision dj' Neither the arcs input to a decision node nor the
arcs output from a decision node can be reversed.

Figure 7.1 is an influence diagram with two decision nodes, dl and d2.
a value node, v, and probability nodes x, y, z and 8. [This is the
influence diagram for the calibration experimental design problem considered
in Barlow, Mensing and Smiriga (1986)]. At the time of decision d2. the
decision dl which was taken as well as the states of probability nodes y anc
x are known. The state of probability node z is not known at the time of
decision d1 or decision d2 since it is not an immediate predecessor node of
either decision node. An influence diagram with decision and value nodes
must be acyclic. For example, if there were a directed path from decision
node d. back to dl' this would imply that we could foretell the future sincc

1

decision d2 occurs after decision dl'

A value node., v, represented by a diamond in Figure 7.1, is a

deterministic function of the states of immediate predecessor nodes. A

value node has only inward pointing arcs. In Figure 7.1, v(+,*) depends o:

the decision, d2. taken as well as the state of probability node z. The
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1#

optimal decision functions, d1 and d,, will depend on the value node. Ii

o
this sense the value node corresponds to the objective (or utility) functio:

for a decision problem.

8. NODE REDUCTION AND DECISION ANALYSIS

By node reduction, we mean the elimination of a node and its inciden:

arcs in an influence diagram. As we have seen, the reduction of a
probability node is valid with respect to distinguished nodes if the
probability node is not distinguished and if it is barren (i.e., all
incident arcs point inward). The op* aal decisions relative to a decision
problem can be found by using node reduction and then by maximizing (or
minimizing if the value node corresponds to a loss function) a related valuc
function.

A list ordering for the influence diagram in Figure 7.1 is

dl <z<B{(x <y« d2 (v,

In Figure 7.1, with decision alternatives d1 and d2 specified, the joint

probability function for random nodes x, y, z and 6 is

P(x.y.z.8] d,.d;) = p(z) p(8) p(x|d,.6) p(yl6.2).

To determine the optimal decision function, d in Figure 7.1 we must

o
first express the value function. v(+*), as a function only of d2 and the

states of immediate predecessor nodes to d_,, namely dl' x and y. The steps

2

in our solution algorithm are as follows:

1. fix the state of all immediate predecessor nodes for all decision

nodes;
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2. reduce all nodes which a1 : predecessors of v (not just immediate
predecessor nodes) that are not decision nodes and are not immediate
predecessors of decision nodes;

3. maximize the resulting value function with respect to possible
decision alternatives d2 {which of course may depend on d]. x and y).

In Figure 7.1, z is a special probability node since it is an immediu-«
predecessor of v. To reduce a probabilistic predecessor of a value nodc, wr
must first reverse all other output arcs. This is of course with the
proviso that it has no output arcs to decision nodes since these cannot be
reversed. We can always do this since the value node may always appear la<-
in an ordered list. Figures 8.1 and 8.2 illustrate the reduction process.

Figures 8.3-8.5 illustrate the decision solution process for a subset
of the influence diagram in Figure 7.1. Nodes d, v and y are distinguished.
Nodes 8 and z are reduced leaving only the distinguished nodes. The
reduction process does noc¢ change the marginal distribution of y. Finaliyv,
for a given value of y, we find a value of d for which

f v(d.z) p(zly)dz

is maximum. This value for d is our optimal decision.

CONCLUDING_REMARKS

The influence diagram can be used to model almost any statistical
problem of interest. In most cases, it graphically highlights conditional
independence relationships implied by the model. Using decision nodes, the

influence diagram provides an alternative to the decision tree for Bavesia:

decision analysis.
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Figure 8.1

Figure 8.2
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